Relative Stability of Highly Charged Fullerenes Produced in Energetic Collisions

Yang Wang

Departamento de Química, Módulo 13 & Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid

July 27 2017 ICPEAC XXX, Cairns, Australia

Theoretical Team in Madrid

Sergio Díaz-Tendero

Manuel Alcamí

Fernando Martín

- Nat. Chem. _
- Nat. Commun. -
- PRL -
- JACS -
- Angew. Chem. -

Charged Fullerenes

Outline

• Motivation

Why charged fullerenes are special: structure-stability problem

• Stability Models

-Previous models -Our CSI model

- Applications Exp. & theo. Cations & anions
- Conclusions & Outlook

Complexity in Fullerene Science

There are a huge number of isomers, but nature chooses only a very few ones.

44 (D_{2d})

 $220 (D_2)$

 $356 (C_1)$

Fullerene C _{2n}	All possible isomers	Synthesizable isomers
C ₆₀	1, 812	1
C ₇₀	8, 149	1
C ₇₆	19, 151	1
C ₇₈	24, 109	3
C ₈₀	31, 924	1
C ₈₂	39, 718	3
C ₈₄	51, 592	4
C ₉₀	99, 918	1

 $1123 (D_2)$ $1124 (C_2)$ $1286 (D_2)$ $1547 (C_2)$ 1548 (C. B $1757 (C_s)$ $1756 (C_1)$ $1761 (C_{3v})$ $1793 (D_2)$ J. Chem. Soc., Perkin Trans. 2, 18 (2001) 1803 (D₃) $1804 (C_s)$ 1805 (D_{2d} 1808 (D_{2d}) $1809 (C_{2v})$ 1812 (I_h) 1810 (D_{2b}) $1811 (D_3)$

 $993 (C_1)$

1079 (C_{2h})

A needle in a haystack job !!

C₆₀ has ~2,000 possible isomers, only one produced in experiments.

Known Rules for Neutral Fullerenes

The 12 pentagons prefer to stay as far as possible from one another.

1. Isolated Pentagon Rule (IPR) Nature, **329**, 529 (1987) Pentagons in stable isomers should be isolated by hexagons.

JACS 125, 5572 (2003)

Neutral Fullerenes Follow the Rules

Fullerene C _{2n}	All possible isomers	IPR isomers	Synthesized isomers
C ₆₀	1, 812	1	1 (IPR)
C_{70}	8, 149	1	1 (IPR)
C ₇₆	19, 151	2	1 (IPR)
C ₇₈	24, 109	5	3 (IPR)
C ₈₀	31, 924	7	1 (IPR)
C ₈₂	39, 718	9	3 (IPR)
C ₈₄	51, 592	24	4 (IPR)
C ₉₀	99, 918	46	1 (IPR)

An Atlas of Fullerenes. Clarendon Press: Oxford, U. K. (1995)

Three Neutral Isomers of C_{70}

Nat. Chem. 7, 927 (2015)

Charged Fullerenes Break the Rules

Plenty of Rulebreakers Found in Experiments

Experimentally synthesized endohedral metallofullerenes (EMFs):

Plenty of Rulebreakers Found by DFT calculations

Positively and negatively charged fullerenes:

Isomer stability order differs, depending on charge state q and cage size 2n.

Previous Theories & Models

- Previous models are only for **negatively** charged and are **controversial**:
 - Maximum aromaticity (M. Solà 2013) $ALA = \sum_{r=1}^{N_{ring}} A_r$ (A_r is local aromaticity of ring r)
 - Minimum electrostatic repulsion
 (H. Zettergren 2008, J.M. Poblet 2010)
 - Minimum strain
 (A. Popov 2008)

IPSI = $\sum_{i=1}^{12} \sum_{j>i}^{12} 1 / R_{ij}$ (R_{ij} are interpentagon distances)

- Angew. Chem. Int. Ed. **52**, 9275 (2013) Nat. Chem. **2**, 955 (2010) JACS **129**, 11835 (2007)
- They are **not convenient** for practical use:
 - Sophisticated quantum chemistry methods (at least semiempirical)
 - Geometry optimization
 - Iterative electronic structure calculation
 - Failure and exceptions in some cases

Previous Theories & Models

Handbook of Nanophysics. CRC Press: London, Vol. 2, Chpt. 25 (2010)

Simple Models for π Systems

Particle-on-a-sphere model 1.

 π electron: a particle confined to the 2D surface of a fullerene cage

Wave functions: Energy levels:

 $Y_{l}^{m}(\theta, \varphi)(l = 0, 1, 2, ...;$ $E_{l,m}=\frac{\hbar^2}{2m_{\rm e}R_{\rm s}^2}l(l+1)=$

$(l = 0, 1, 2,; m = 0, \pm 1,, \pm l)$ $\frac{\hbar^2}{m_e R^2} l(l+1) = \frac{e^2 a_0}{(4\pi\epsilon_0) 2R^2} l(l+1)$	
	POSTER:
COMMUNICATIONS	TH-59
ARTICLE Received 17 Jun 2016 Accepted 13 Oct 2016 Published 22 Nov 2016 Atomically received phase trace	Ol: 10.1038/mcomms13550 OPEN

Atomically esolved phase transition of in cations solvated in helium droplets

M. Kuhn¹, M. Renzler¹, J. Postler¹, S. Ralser¹, S. Spieler¹, M. Simpson¹, H. Linnartz², A.G.G.M. Tielens², J. Cami^{3,4}, A. Mauracher¹, Y. Wang^{5,6,7}, M. Alcami^{5,6,7}, F. Martín^{5,6,8}, M.K. Beyer¹, R. Wester¹, A. Lindinger⁹ & P. Scheier¹

2. Hückel Model (Tight-Binding)

A simple LCAO treatment with some simplifying approximations:

des Benzols und verwandter Verbindungen¹).

Von Erich Hückel in Stuttgart.

Mit 10 Abbildungen. (Eingegangen am 28. April 1931.)

Z. Phys. **70**, 204 (1931); **72**, 310 (1931); **76**, 628 (1932)

Advantages of Hückel Model

1. Almost computationally costless

Require only:Connectivity information (molecular graph theory)No need for: - Iterative electronic structure calculation
- Geometry optimization

2. Describes exclusively the π effect

 π effect is clearly separated from other effects (e.g. strain, steric etc.)

3. Conceptual & Parameter-free / Analytic

No parameters (α or β) at all: wave function, atomic charges, bond orders, ...

Or, in units of $-\beta$: relative energies, band gaps, ...

π-Conjugated Organic Molecules

Band Structure of Graphene

$$E(k_x, k_y) = \alpha \pm \beta \sqrt{1 + 4\cos\left(\frac{\sqrt{3}k_y a}{2}\right)\cos\left(\frac{k_x a}{2}\right) + 4\cos^2\left(\frac{k_x a}{2}\right)}$$

Band Structure of Nanotubes

Application to Charged Fullerenes

- α : Coulomb integral (negative value)
 - β : resonance integral (negative value)
- R_{π}^{*} : effective cage radius

q: charge

Phys. Rev. A 80, 033201 (2009)

Nat. Chem. 7, 927 (2015)

- The only **variables**: eigenvalues $\{\chi_k^i\}$

Combining σ and π effects

Relative isomer energy (Hückel + PAPR)

Total π energy of isomer *i* with charge *q*:

$$E_{\pi}^{i,q} = (2n-q) \left(\alpha - \frac{q}{2R_{\pi}^*} \right) + 2\beta \sum_{k=1}^{n-q/2} \chi_k^i$$

Energy change due to charging (π *stabilization energy*):

$$\Delta E_{\pi}^{i,q} = E_{\pi}^{i,q} - E_{\pi}^{i,0} = -2\beta X_i^q - q\alpha + \frac{(2n-q)q}{2R_{\pi}^*}$$

Relative energy of **neutral** isomer *i*:

$$E_{
m rel}^{i,0} = 0.2\,{
m NAPP}_i(-2eta)$$
 Eq. of PAPR (energy penalty: 0.2 (-2 eta)

Relative energy of **ionic** isomer *i* with charge *q*:

We define Charge Stabilization Index (CSI):

$$\mathrm{CSI}_i^q \equiv X_i^q + 0.2 \,\mathrm{NAPP}_i$$

$$X_{i}^{q} \equiv \begin{cases} \sum_{k=n-q/2+1}^{n} \chi_{k,i} & \text{if } q > 0 \\ \\ \sum_{k=n+1}^{n-q/2} \chi_{k,i} & \text{if } q < 0 \end{cases} \xleftarrow{\text{HOMOs}} \\ \text{Only over frontier} \\ \text{orbitals involved in} \\ \text{the charge transfer} \\ \xleftarrow{\text{LUMOs}} \end{cases}$$

Charge Stabilization Index (CSI)

- More negative CSI \rightarrow more stability
- A clear physical interpretation
- Almost parameter-free: no α , β , R_{π}^{*}
- Depends only on cage connectivity

(in units of -2β)

One rule for the electron-rich...

A vast number of possible isomers exist for each fullerene, yet few are observed experimentally. Neutral fullerenes typically minimize adjacent pentagons, but charged ones often tolerate them. Now, a simple model taking into account structural strain and π electronic aspects predicts the asymmetric relative stabilities of charged isomers.

Patrick Fowler

nature ARTICLES chemistry PUBLISHED ONLINE: 19 OCTOBER 2015 | DOI: 10.1038/NCHEM.236

Cage connectivity and frontier π orbitals govern the relative stability of charged fullerene isomers

Yang Wang^{1,2}, Sergio Díaz-Tendero¹, Manuel Alcamí^{1,2} and Fernando Martín^{1,2,3*}

Nat. Chem. 7, 927 (2015)

A Test Case: C_{42}^{4-}

Efficiency of CSI

Time cost for calculating all 99,918 isomers of C_{90}^{6+} on a single processor computer:

Method	Time cost	
CSI	15 min	
AM1	~20 days	
SCC-DFTB	~80 days	
DFT (B3LYP/6-31G*)	~600 years	

Δ CSI as a Prescreening Tool

 $\Delta \mathrm{CSI}_i = \mathrm{CSI}_i - \mathrm{CSI}_{i0}$

i: a given isomer

 i_0 : the lowest-energy isomer in neutral state

 $\Delta CSI_i > 0$: Unstable isomers of charged fullerenes $\Delta CSI_i \le 0$: Eligible candidate of stable charged isomers

Applications: Anions C_{80}^{q-}

Applications: Cations C_{80}^{q+}

- Impressive prediction power

Nat. Chem. 7, 927 (2015)

Our model predicts ALL experimentally synthesized and computationally determined isomers!!

The IPR & PAPR are stilled obeyed by fullerene cations, but frequently broken by fullerene anions, in which π effect plays over σ strain.

Nat. Chem. 7, 927 (2015)

Also works for small cages: $C_{2n}^{q-}(2n = 28-50; q = 2,4,6)$

Conclusions

- 1. The stability of charged fullerenes is govened by the **interplay** between charge delocalization over frontier π orbitals and σ strain. The former can be quantified by simple HMO theory and the latter by counts of APPs, which gives rise to the CSI model.
- 2. The CSI model provides a unified view of both positively and negatively charged fullerenes, and offers a common theoretical frame for previous models (LUMO gaps, electronstatic repulsion, aromaticity, etc).
- 3. CSI can be easily calculated requiring only the connectivity between atoms, allowing a rapid prediction of the most stable isomers of charged fullerenes and endohedral metallofullerenes.

The FULLFUN software package, avaible at:

http://fullfun.sourceforge.io

Outlook

1. Improvement of the CSI model, by combining our generalized motif model for fullerenes.

$$CSI_{IPR,i}^{q} = X_{i}^{q} + \sum_{m=1}^{30} E_{m}N_{m}^{i} + J\ln\frac{2n+L}{60}$$

PCCP, DOI: 10.1039/c7cp01598d JCTC, to be submitted

- 2. Extension to exohedral fullerenes: the XSI model JACS, 139, 1609 (2017)
- 3. Applications to study reactions of fullerenes. (paper submitted)
- 4. Possible extensions to related systems: PAHs, graphene, ...

Acknowledgements

Allocation of computer time: CCC-UAM

instituto

Spanish MINECO Projects: FIS2013-42002-R, CTQ2013-43698-P

CAM Projects: NANOFRONTMAG-CM (ref. S2013/MIT-2850)

63

Thank you for your attention!!