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Motivation & Aims

Strathclyde

* ITER nuclear fusion reactor currently being
built in Cadarache, France.

* First plasma projected for 2025.

 Dwarfs Joint European Torus (JET) in terms of
plasma volume and reactor size.

* Aims to generate energy with Q=10 (output
energy 10 times the input).
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Schematic view of ITER

University of

Strathclyde

T

l #\\‘“, ¥ 10
- - ! ‘ra‘!|!

\ﬂbuu B 8
gﬁ.”lx - . 1

Hl’\‘ﬂ

plasma

Outer Vertical
/ Target (JA)

Outer _
midplane

Vertical distance (m)

2 BT ‘—Wbafﬂes
' W outer divertor

target

e e e e

4 6 8

Major radius (m)

Cassette Body
(EU)

tralia




Motivation & Aims
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* The divertor will be composed of tungsten.
Why?
— Tungsten has high melting point.
— Low affinity for tritium absorption.
— Can withstand large power loads.

* Plasma will occasionally make contact with
the divertor, sputtering tungsten impurities
into the core plasma.

ICPEAC 2017 - Cairns, Australia



Motivation & Aims
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* Heavy ions are very efficient radiators.

Tungsten impurities will cool the plasma, and
can potentially quench it.

e Detailed collisional-radiative (CR) modelling

required to understand the effects of these
Impurities.

* Require complete, isonuclear DR rate
coefficients for ion being modelled.

ICPEAC 2017 - Cairns, Australia



B a C kg ro u n d Unlversltyof

g_trathclyde

e Several Tungsten DR data sets exist:

— Putterich et al. (2008), empirically scaled ADPAK
data (Post et al. 1977, 1995).

— Foster (2008), Burgess General Formula.
— Chung et al. (2005), FLYCHK.

 Compare steady-state ionization balances
computed using ionization rate coefficients
from Loch et al. (2005), and Putterich/Foster
DR rate coefficients.
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Recombination Rate Coefficient (cm?®™)
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The Tungsten Project

Strathclyde

* Created to calculate a set of self consistent,
partial, final-state resolved DR rate
coefficients for entire isonuclear sequence of
Tungsten.

e Data hosted on OPEN-ADAS, calculated using
AUTOSTRUCTURE (Badnell 1986, 1997, 2011).

ICPEAC 2017 - Cairns, Australia



The Tungsten Project
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e AUTOSTRUCTURE is a distorted wave code
using kappa-averaged semi-relativistic
wavefunctions calculated with a TFDA
potential.

e Calculates level, term, or configuration
resolved energies, radiative/autoionization
rates, and many other atomic quantities.
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The Tungsten Project
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* |t gets difficult remembering what comes after
/=30 on the periodic table...

* |Instead of referring to an ion by the metal it
represents (i.e. Zn-like), refer to these by their
/.

e E.g. Si-like is now 14-like, Zn-like is 30-like, and
Gd-like (Gadolinium) is 64-like.
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The Tungsten Project
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* For 01- to 48-like (4f%), DR rate coefficients are
calculated in core excitations, labelled by
initial and final principal quantum number n;
and ns respectively.

* E.g. A core excitation beginning at n; = 3 and
finishing at ng = 4 is 3 - 4.
* We check if a core excitation is worth

calculating in IC by looking at its contribution
to the total in configuration average.
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The Tungsten Project
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 Summing over autoionizing states, the
Rydberg electron is calculated explicitly for
each principal qguantum numbern up ton =
25, and then logarithmically up to n = 999.

 Angular momenta number £ are included so
as to numerically converge the DR rate
coefficients to <1% over the ADAS
temperature range z%(10 — 107)K.
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The Tungsten Project
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* N-electron configurations include all possible
single excitations plus mixing.

* N+1-electron configurations are just N-
electron with an extra electron added.

* Mixing configurations are included using the
“one up-one down” rule.

e E.g.3p% > 35 3d, 4p 4d — 4s 4f

ICPEAC 2017 - Cairns, Australia



Rate Coefficient (cm®s™)

10713

Cumulative Fraction

10710

10—11

10~

46-like Total Recombination Rate Coefficient

107°

IILLLBLLL

I 'IIIIIIl

1.00

Total
34 — CA ---oiein-
RR - IC - - - -
46 — CA
45 — |C
44 — |IC

o
P)
o

Fractional abundance —

0.01

1.0
0.8
0.6
0.4

0.2
0.0

10°

10’7

Temperature (K)

108

®)
©0



Rate Coefficient (cm?s™)
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Rate Coefficient (cm?s™)

Total 4-5 core excitation: 4d-shell

10_9 I~ —+ T T T | | T ! T T T T T _]
(2R | | 37 —like 4 |-
i‘"—i-,.\ | | 38_|‘|ke e + :
EaRVOE oo - | | 39-like +— — — —+
B **.’K Sk | | 40-like +-—-—- —+ |
- AR S >k | | 41—=like +--—--- —+ |-
‘ Sk L || 42—like
<, e, .
-10 = S < | | 43—like
10 — ~ ‘=|\ N 'k - ]
~ e SN K \\L, | N | [ 44 —like .
- *.*x ‘\{.""x N~ | [45-Tike .
- "y HRERL *:3,,\_ il | 46—like -
- N SR PR T
L ~|\K~'|\ ~Ql,\'l \-I\ -
LSRR By Tk
i ! SRR Sk Tk i
| SRR Sk Tk
107" ' PR Sk, R
- | LRSS,
- | | SRS Sk, -
N | | SRORCRL N -
- | | \'I\:'l\ e\_‘t
. | | \kﬂ\‘_
| | \+d
u | | :
| |
10_12 1 1 1 1 I I 1 I 1 1 1 1 1 1 1
10° 107 108

Temperature (K)



Relativistic Mixing
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 Complete (as possible) configuration sets are
required to calculate correct energies and
radiative/autoionization rates.

 This has a knock-on effect on the calculated
DR rate coefficient.

* Look at 30-like, core excitations 4-4 and 4-5,
calculate configuration resolved (no mixing)
and level resolved.
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Partial 4-4 core excitation — Recombination into Rydberg N.

108

________ I Irrtrr 1 1T 1 LA ISG
i 7y 7
B _. \\.\\~~;» -
I P 7/ 7,7 i
u ___ R 4
I 7/
Lo .
S [t Oo N .
1 | | A { I 1
ccccc )
\\ §~~ -
/
-\
7
P
N X
— O N~
|1e
| -
T 3
-
. O
| -
- o
Q
- &
o
| —
<
e
O »
> ¢ ©
c 2 4o
5 5 =
S i
. @)
. p i
£ ©
x\\ me 7
S o o
I\ \h —
L \—\_______ | ________ | ________ |
o b N 0
| | | |
o o o o

(,-8,Wwd) jud10144800 310Y ¥Q



DR Rate Coefficient (cm®™)
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The Tungsten Project
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* For 49-like onwards, splitting by core
excitation no longer makes sense.

* Asresidual charge decreases, 5¢ orbitals move
below 4€, making them energetically
accessible.

e There are more accessible radiative and
autoionization pathways available.
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The Tungsten Project
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e As a first cut, calculate 49-like to 73-like in
configuration average.

* For N-electron target, include all possible
double promotions from ground configuration
forn=4—-7,and¥=0—(n—1).

 For N+1 target, include all possible triple

oromotions from ground over same nf range.

* Rydberg n and £ the same as previous case.
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DR Rate Coefficient (cm’s™)
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DR Rate Coefficient (cm’s™)
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DR Rate Coefficient (cm’s™)

73-like Comparison
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So... where are we now?
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So... where are we now?
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e lons W73+ — W>6* (01-like — 18-like): Published.

e lons W>>* — W38+ (01-like — 18-like): Published.
e lons W37t — W28t (37-like — 46-like): Paper being
written.

* lons W27T — W12+t (47-like — 60-like):
Redistributed configuration average results.

e lons W13t — WOt (61-like — 73-like): Level-
resolved currently calculating.
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Future Work
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* Application to other ions: Elements relevant to
disruption mitigation such as argon, xenon...

* Remaining IC results for 61-like to 73-like.

* Collisional-Radiative modelling of ITER-like
plasmas.
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Conclusions
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* DR/RR data calculated for entire sequence of
tungsten in configuration resolution. Level
resolution available by November 2017.

* Significant changes to peak fractions and
temperatures from baseline ADAS data.

* Configuration mixing important in calculating
partial DR rate coefficients.
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