ICPEAC XXX Cairns, Australia 2017-07-25

Tutorial: Shaping atoms and molecules with strong laser fields

<u>Outline</u>

- Introduction

(what is the shape of atoms?)

- What happens to atoms in strong laser fields? (besides ionization and recollision)
- How to experimentally measure shape-changing atoms? (methods viable for neutral species)
- What do we learn?
- Where do we go with it?

MPIK Heidelberg, Germany

Thomas Pfeifer

The "shape" of atoms ...

... in the Energy domain: The Spectrum

... in real space: Wavefunction/Orbital

e

Atomic clocks

traditional spectroscopy (Kirchhoff, Bunsen, et al. @Heidelberg ~1860)

Absorption Spectroscopy

as explained on WikipediA The Free Encyclopedia isity (counts) 2500 Wollaston (1802), Fraunhofer (1814): 2000 1500 Solar spectrum assigned to characteristic emission lines Kirchhoff, Bunsen (1859) Wavelength (nanometers) Spectral line positions energy level diagram spectra transmission photon spectra Energy Energy absorption spectra wavelengtł light source incident radiation transmitted radiation sample/analyte Solar atmosphere Sun Emission Transmission Detection Absorption

Absorption Spectroscopy

as explained on

Wollaston (1802), Fraunhofer (1814): Solar spectrum assigned to characteristic emission lines Kirchhoff, Bunsen (1859)

Spectral line positions

Spectral line widths

Spectral line shapes

Strong-field ionization of Atoms

P. Eckle *et al.* Science **322**, 1525 (2008)

A. Pfeiffer *et al.* Nat. Physics (2012)

A never-ending controversy: "tunneling-time measurement"

Where is the problem?

- No time operator, hence: time not directly observable

- need to define a "time standard" ("controversy")
- here in particular: mapping quantum dynamics (tunneling) into classical dynamics (trajectory)

Definition: Wigner time (Keitel group) ->Key: allow both **tunneling** <u>time</u> and <u>momentum</u> Experimental test (Moshammer group) ->Key: Compare two species (Ar, Kr) by coincidence measurements under otherwise identical conditions with high angular precision

few-body quantum dynamics

a fundamental scientific question:

"how do two or more excited electrons move and interact in atoms and molecules?"

spatial scale R ~ sub/few Å

temporal scale T ~ sub/few fs

The "quantum few-body problem" *in strong fields*

Sciencific goal: measure / understand / control the quantum dynamics of few-body systems in strong fields

(x-ray) movies of single molecules

Petahertz-clocked computing

x-ray precision spectroscopy

Laser control of chemical reactions

Time-resolved Science with novel x-ray/XUV laser sources

High Harmonic Generation

XUV spectroscopy

Figs.: Wikipedia

Time-resolved imaging and spectroscopy

time-dependent XUV absorption spectroscopy

HHG-based applications, active groups:

Exp.: Leone, Neumark, Keller, Gallmann, Chang, Krausz, Sansone, Kim, Sandhu, Vrakking, Wörner ... **Theory:** Schafer, Gaarde, Santra, Martín, Argenti, Rost, Greene, Keitel, Stockman, ...

time-dependent XUV absorption spectroscopy

What happens to bound states and resonances in *short* and **strong** fields ?

time delay

absorption spectrum

near-VIS femtosecond

pulse

XUV attosecond pulse

Phase $arphi_1$

Phase $arphi_2$

XUV photon energy

 $\psi(x,t) \propto (a_1)\psi_1(x)e^{-\frac{i}{\hbar}E_1t}$ $(a_2)\psi_2(x)e^{-\frac{i}{\hbar}E_2t}$

Role of bound (excited) states and resonances in (short) strong fields

Freeman resonances in strong-field ionization

frustrated tunnel ionization

Freeman, Bucksbaum et al. PRL 59, 1092 (1987)

x-ray FEL multiple ionization

Rudek et al. Nat. Photonics 6, 858 (2012)

Zimmermann, Buller, Eilzer, Eichmann PRL 114, 123003 (2015)

molecular charge migration

PNAS 103, 6793 (2006)

Remacle, Levine Lünnemann, Kuleff, Cederbaum CPL 450, 232 (2008)

correlated bound-state dynamics: Doubly excited helium

a prototype system for electron correlation

doubly excited helium: Fano resonance

doubly excited helium: Fano resonance

doubly-excited helium, in a strong laser field

doubly-excited helium, coupled to a laser field

<u>Previous work</u> (on laser coupling of doubly-excited helium):

Theory:

Madsen, Themelis, Lambropoulos
Zhao, Chu, Lin et al.

.

- *Experiment:* - Loh, Greene, **Leone**, et al.
- Lon, Greene, Leone, et al
- Gilbertson, Chang et al.

••

Experimental challenge:

- high (asec) temporal and
- high (meV) spectral resolution

required at the same time

Experimental setup

for time-resolved XUV absorption spectroscopy

Experimental Setup in the Lab

Flat-Field XUV Spectrometer, home built, for broadband high resolution

Grazing-Incidence Split Mirror for broadband XUV throughput

Time-resolved doubly-excited 2e⁻ dynamics in He

comparison experiment and theory

Measuring the time-dependent phase difference of 2s2p and sp_{23+} autoionization states

cooperation with Javier Madroñero (Theory, TU München) Luca Argenti, Fernando Martín (Theory, UAM Madrid)

Testing ab-initio theory of e- correlation dynamics

cooperation: Luca Argenti & Fernando Martín (UAM Madrid, Spain) Javier Madroñero (TU Munich)

experimentally reconstructed (2s2p & sp_{2.3+} only):

ab-initio simulation, all excited states:

first experimental observation of two-electron wavepacket motion $\mapsto \Delta z = 10 \text{ a.u.}$

C. Ott et al. Nature 2014

Time-resolved doubly-excited 2e⁻ dynamics in He

Time-resolved doubly-excited 2e⁻ dynamics in He

Intensity dependence of 2-e⁻ quantum dynamics

Experimental date

Intensity, a key parameter (the coupling strength)

C. Ott et al. Nature 2014

asking two electrons in He some quick questions ...

What is absorption? And how does it respond to intense pulsed light?

The refractive index n

 $\overline{f}(x,t) = \overline{E}_{o} e^{i(k - med \times -wt)} / k = \frac{\omega}{med} = n \cdot \frac{\omega}{C_{vec}} = n k_{vec}$ $\begin{array}{l} (f_{n} = E_{n} e_{n} (nh_{vac} \times -wt) & n = Re(n) + i \operatorname{Om}(n) \\ f_{n} = E_{n} e_{n} (Re(n)h_{vac} \times -wt) & -J_{n}(n)h_{vac} \times E_{n} \\ f_{n} = E_{n} e_{n} & e_{n} \\ f_{n} = P_{n} e_{n} \\ f_{n} = X \cdot E_{n} \\ f_{n} = X \cdot E_{n} \\ f_{n} = E_{n} \\ f_{$ $P = \int dt dt pole moment$ density of dipoles (c. p. atoms/ $<math display="block">n^{2} = \varepsilon_{p} = \Lambda + \chi$ $n = \sqrt{1+\chi} \sim 1 + \frac{\chi}{2} = 1 + \frac{pd}{E} = \int \ln(\omega) = \rho \frac{d(\omega)}{E(\omega)}$

Optical response and absorption

Resonance absorption in the Time Domain

The Fano dipole phase

Exact mapping from Fano q parameter to temporal phase shift ϕ

C. Ott et al. Science 340, 716 (2013)

Science 340, 716 (2013)

Changing the (spectral) shape of atoms

Extracting the laser-induced phase shift

Cooperation with J. Madronero, L. Argenti, F. Martín

C. Ott et al. Nature 2014

The Fano Phase Shift

The dipole-control model

Blättermann et al. J. Phys. B: At. Mol. Opt. Phys. 47 124008 (2014)

The dipole-control model

The Dipole-Amplitude Gate

Kaldun, Blättermann et al. Science 2016

The birth of a Fano resonance

Kaldun, Blättermann et al. Science 2016

From theory to experiment

Kaldun, Blättermann et al. Science 2016

Two complementary studies

CHEMICAL PHYSICS

Attosecond dynamics through a Fano resonance: Monitoring the birth of a photoelectron

V. Gruson,¹* L. Barreau,¹* Á. Jiménez-Galan,² F. Risoud,³ J. Caillat,³ A. Maquet,³ B. Carré,¹ F. Lepetit,¹ J.-F. Hergott,¹ T. Ruchon,¹ L. Argenti,²⁺ R. Taïeb,³ F. Martín,^{2,4,5}[‡] P. Salières¹[‡]

Photoelectron spectroscopy

Science 354 734 (2016)

CHEMICAL PHYSICS

Observing the ultrafast buildup of a Fano resonance in the time domain

A. Kaldun,^{1*+} A. Blättermann,¹⁺ V. Stooß,¹ S. Donsa,² H. Wei,³ R. Pazourek,² S. Nagele,² C. Ott,¹ C. D. Lin,³ J. Burgdörfer,² T. Pfeifer^{1,4}‡

Absorption spectroscopy

Science 354 738 (2016)

From atoms to molecules

Can we change the shape of molecular states?

If such control works for (two) bonding electrons in molecules this would open doors to laser-directed chemistry.

Atomic and molecular resonances interacting with weak to strong laser fields

Can we change the shape of complex molecules?

Fano control of molecules in the liquid phase cooperation with J.-M. Mewes, A. Dreuw, Univ. Heidelberg

Time-resolved Science with novel x-ray/XUV laser sources

High Harmonic Generation

XUV spectroscopy

Figs.: Wikipedia

Challenge: "See" (image) molecules in x-ray Light

Neutze et al., Nature 406, 752 (2000)

One Goal: "See" (image) molecules in x-ray Light

Glownia et al. PRL **117**, 153003 (2016) (Bucksbaum group@SLAC)

ensemble of gas-phase iodine (I₂) molecules

Time-resolved dynamics

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

Scattering image acquired for various delay times

Glownia et al. PRL **117**, 153003 (2016) (Bucksbaum group@SLAC)

Reconstructed molecular wavepacket after single-photon excitation

One Goal: "See" (image) molecules in x-ray Light

Next Step: "See" (image) laser-controlled molecules in x-ray Light

Neutze et al., Nature 406, 752 (2000)

X-ray diffraction crash course/refresher

LCLS Proposal (1st submission 2012)

X-ray imaging of laser-induced coherent dynamics in C₆₀ fullerenes

Claus Peter Schulz*, Ilme Schlichting, Lutz Foucar, Thomas Möller, Christoph Bostedt, Timur Osipov, Arnaud Rouzée, Marc Vrakking, Artem Rudenko, Katharina Kubicek, Simone Techert, Nora Berrah, Jochen Küpper, Ulf Saalmann, Jan Michael Rost, Rüdiger Schmidt, Kiyoshi Ueda, Louis DiMauro, Robert Moshammer, Joachim Ullrich, and Thomas Pfeifer*

*spokespersons: cps@mbi-berlin.de, tpfeifer@mpi-hd.mpg.de

Abstract: Optical lasers interacting with C_{60} fullerene molecules induce coherent electronic and vibrational excitations, resulting in the deformation of the originally symmetric structure. The strong-field symmetry-breaking (leading to asymmetric prolate/oblate deformation vs symmetric breathing mode) and the corresponding coherence lifetimes have only been indirectly explored in experiments, while direct imaging could provide answers to these scientific questions. This experiment can only be conducted at the LCLS due to its specific attributes as explained in the experimental section. C_{60} represents an important model system at the interface between clusters and molecules, and also between inorganic and organic medium-size molecules. The results of this proposed experiment are also expected to have benchmark character for future studies in dynamical x-ray diffractive imaging of molecules.

One Goal: "See" (image) laser-controlled molecules in x-ray Light

Experimental Data keV photon ergy ractive imaging

LS Experiment

C₆₀ dynamical transitions

delay ► IR early

0.35 mJ

Imaging time-resolved laser-induced symmetry breaking?

horizontal width vertical width

total diffraction signal

IR-Laser polarization: horizontal

LCLS Experiment July 2016, preliminary results, analysis in progress

Opening new science opportunities

of particular interest: - for LCLS II -for European XFEL (higher rep rates)

- femtosecond time-resolved x-ray imaging at 10^{11} / cm³ gas-phase (~molecular jet) densities is possible (for ensemble measurements) - in C₆₀: observation of different dynamical regimes depending on (optical) laser intensity low intensity $10^{15} \frac{W}{cm^2}$ low

Can we steer, and watch, laser-driven chemistry in real time?

C₆₀ imaging: AMO@LCLS

Thanks to the players of the

quantum football/soccer team

oven Kisto

Acknowledgements

Quantum Dynamics&Control Division @ MPIK

Christian Ott

Alexander Blättermann

Andreas Kaldun

Yonghao Mi Zuoye Liu Thomas Ding Marc Rebholz Max Hartmann

Philipp Raith

Martin Laux

Max Hartmann Paul Birk Lennart Aufleger Stephan Görttler Gergana Borisova Kai Sdeo Robert Moshammer Claus Dieter Schröter

Nicolas Camus Patrick Fross Sofia Botsi Frans Schotsch Farshad Shobeiry Sven Augustin Georg Schmid Yifan Liu Severin Meister Hannes Lindenblatt Florian Trost Hemkumar Srinivas Rajagopalan Subramanian Jose Crespo Maria Schwarz Renate Hubele Sven Bernitt Lisa Schmöger Andrii Borodin Janko Nauta Peter Micke Stepan Dobrodey Michael Blessenohl Julian Stark

Alexander Dorn Niels Kurz Xueguang Ren Marvin Weyland

Kirsten Schnorr Sven Augustin

Veit Stooß

Main Cooperators: Thanks to ... and many more !

- C. Keitel, J. Evers, Z. Harman and groups (MPIK): Fano physics
- C. Greene (Purdue Univ., USA): Fano physics
- L. Argenti, F. Martín (Univ. A. Madrid, Spain): 2e⁻ WP, 2D spec
- J. Madroñero (TUM&Univ. del Valle, Cali, Colombia): 2e- WP
- R. Pazourek, S. Donsa, J. Burgdörfer (Vienna Univ.): Fano birth
- H. Wei, C.-D. Lin (Kansas State Univ., USA): Fano birth
- C. P. Schulz, A. Rouzee, M. Vrakking and group (MBI Berlin): C₆₀
- T. Osipov, R. Coffee, D. Ray, and groups (LCLS/SLAC): C₆₀
- N. Berrah, R. Obaid (Univ. Connecticut, USA): C₆₀
- K. Motumura, Y. Kumagai, K. Ueda, Tohoku Univ., Japan: C₆₀

Take-home messages

Atoms and molecules change their spectral (line) shape

as a function of laser intensity

quantum-state phase $\varphi = \Delta E \Delta t$

$$q(\varphi) = -\cot(\frac{\varphi}{2})$$

- Phase control tunes the Fano *q* parameter
- Amplitude gate resolves the Fano resonance

... and these mechanisms are general...

<u>See/image</u> molecules changing their <u>spatial shape</u>
 Intensity dependence of structural dynamics in C₆₀

Understand & Control Matter in Strong laser fields