Strong-Field Ionization of Hydrogen

Igor V. Litvinyuk

Centre for Quantum Dynamics & Australian Attosecond Science Facility Griffith University Brisbane, Queensland, Australia

ICPEAC Cairns 26 July 2017

Outline

- Motivation
- Experiments with atomic hydrogen
 - Quantitatively accurate ionization measurements
 - Absolute CEP determination
 - Precise intensity calibration
 - Attosecond streaking and tunneling time
 - Experiments with molecular hydrogen
 - Isotope effect in tunneling ionization of $\rm H_2/\rm D_2$

Motivation: Benchmarking and validating theoretical models

- To achieve quantitative agreement of theory and experiment
- To validate approximate models by comparison with accurate measurements

IOP Publishing

J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 204003 (18pp)

Journal of Physics B: Atomic, Molecular and Optical Physics doi:10.1088/0953-4075/47/20/204003

Review Article

Benchmarking strong-field ionization with atomic hydrogen

D Kielpinski $^{1,2}\text{, R T Sang}^{1,2}$ and I V Litvinyuk 2

¹ ARC Centre of Excellence for Coherent X-Ray Science, Centre for Quantum Dynamics, Griffith University, Nathan QLD 4111, Australia

² Australian Attosecond Science Facility, Centre for Quantum Dynamics, Griffith University, Nathan QLD 4111, Australia

2014 - 50 years since Keldysh's paper

2018 – 25 years since Corkum's paper

• Motivation

 \bigcirc

- Experiments with atomic hydrogen
 - Quantitatively accurate ionization measurements
 - Absolute CEP determination
 - Precise intensity calibration
 - Attosecond streaking and tunneling time
- Experiments with molecular hydrogen
 - Isotope effect in tunneling ionization of H_2/D_2

Why H?

It is the only system where accurate *ab initio* modeling with strong fields is currently possible

Strong-field ionization of atomic hydrogen: results

Pullen et al., Opt. Lett. 36, 3660 (2011)

Strong-field ionization of atomic hydrogen: CEP effects

CEP measurement: stereo phasemeter

Single-shot carrier-envelope phase measurement of few-cycle laser pulses

T. Wittmann¹, B. Horvath¹, W. Helml¹, M. G. Schätzel¹, X. Gu¹, A. L. Cavalieri¹, G. G. Paulus^{2,3} and R. Kienberger^{1,4}*

Wittmann et al., Nature Physics 5, 357 (2009)

Absolute CEP calibration with atomic H

Precise intensity calibration

Measurement accuracy – 1%!

Pullen et al., Phys. Rev. A 87, 053411 (2013)

Transferable intensity calibration standard H

By fitting phenomenological curves intensities could be determined with accuracies 1.3% using Ar, 1.5% using Kr and 2.5% using Xe.

Wallace et al., Phys. Rev. Lett 177, 053001 (2016)

• Motivation

• Experiments with atomic hydrogen

- Quantitatively accurate ionization measurements
- Absolute CEP determination
- Precise intensity calibration
- Attosecond streaking and tunneling time
- Experiments with molecular hydrogen
 - Isotope effect in tunneling ionization of H_2/D_2

Attosecond streaking and tunneling time

What is tunneling time?

Is it real? Is it finite?

Can it be measured?

Keldysh time

$$\tau_{k} = l/|\upsilon|$$
$$v = i\sqrt{|E_{0}|/2}$$
$$\gamma_{k} = 2\pi \tau_{k}/T_{0}$$

Tunneling regime $\gamma_k \ll 1$

 $\mathcal{T}_k << T_0$

Attoclock experiments

Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms

Adrian N. Pfeiffer^{1*}, Claudio Cirelli¹, Mathias Smolarski¹, Darko Dimitrovski^{2*}, Mahmoud Abu-samha², Lars Bojer Madsen² and Ursula Keller¹

Pfeiffer et al, Nature Phys. 47, 204003 (2014)

Attoclock interpretation

Interpreting attoclock measurements of tunnelling times

Lisa Torlina^{1†}, Felipe Morales^{1†}, Jivesh Kaushal¹, Igor Ivanov², Anatoli Kheifets², Alejandro Zielinski³, Armin Scrinzi³, Harm Geert Muller¹, Suren Sukiasyan⁴, Misha Ivanov^{1,4,5} and Olga Smirnova^{1*}

Tunneling is instantaneous!

Torlina et al, Nature Phys. 11, 503 (2015)

Attoclock with atomic hydrogen: experimental setup

Attoclock with atomic hydrogen

$$\theta_{tunnel} = \theta_{offset} - \theta_{streak} - \theta_{Coulomb}$$
$$\theta_{streak} = 90^{\circ} \qquad \theta_{Coulomb} = ?$$

Attoclock with atomic hydrogen: experimental and theoretical results

Attoclock with atomic hydrogen: Conclusions

- Excellent agreement between experiment and 3D-TDSE (Coulomb) calculations.
- Angular offsets from theory, $\theta_{offset} \propto 1/\sqrt{Intensity}$.
- A simple Rutherford scattering model⁵ for the electron in a Coulomb potential (Z/r) explains it qualitatively.

$tan(\alpha)$	_ 1 Z	$1 E_0$	ω^2
$\left(\frac{1}{2}\right)^{-1}$	$-\frac{1}{v_{\infty}^2}\rho$	$A_0^2 I_p$	$\overline{E_0I_p}$

- Simulations with short-range Yukawa potential confirm that the tunnelling is instantaneous (within the numerical uncertainties).
- This puts an upper limit of 1.8 *asec* on possible delays due to tunnelling.

For more details see Satya's poster MO-049 and arXiv:1707.05445 (2017)

"Everything should be made as simple as possible, but not simpler." (Albert Einstein)

A model should neglect as much as possible, but not more.

Commonly used approximations:

strong-field approximation (SFA), quasi-static approximation (QSA), single-active-electron approximation (SAE), dipole approximation, Born-Oppenheimer approximation (BOA), **frozen-nuclei approximation (FNA)**

- Motivation
- Experiments with atomic hydrogen
 - Quantitatively accurate ionization measurements
 - Absolute CEP determination
 - Precise intensity calibration
 - Attosecond streaking and tunneling time
 - Experiments with molecular hydrogen
 - Isotope effect in tunneling ionization of $\rm H_2/\rm D_2$

Ionization of molecular hydrogen

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 87, 041401(R) (2013)

Effect of nuclear motion on tunneling ionization rates of molecules

Oleg I. Tolstikhin,^{1,2} Hans Jakob Wörner,³ and Toru Morishita⁴ ¹National Research Center "Kurchatov Institute," Kurchatov Square 1, Moscow 123182, Russia ²Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia ³Laboratorium für Physikalische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland ⁴Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofu-ga-oka, Chofu-shi, Tokyo 182-8585, Japan (Received 29 January 2013; published 9 April 2013)

We show that the observable rate of tunneling ionization of a molecule in an intense low-frequency laser field is affected by nuclear motion and can essentially differ from a bare electronic characteristic calculated for fixed nuclei. Both the absolute value of the rate and the shape of its orientation dependence are affected. The effect is significant for $I \sim 10^{14}$ W/cm² and becomes more pronounced at lower intensities. An isotope effect in tunneling ionization of H₂ and D₂ is predicted. The results are compared with available experiments.

FIG. 3. (Color online) The ratio of the ionization rates $\Gamma_{\nu=0}(\beta)$ of H₂ and D₂ as a function of *F* for $\beta = 0^{\circ}$ (solid back line) and 90° (dashed red line). Dashed-dotted blue line: Results from Eq. (14). The inset shows $\Gamma_e(R_0,\beta)$ (solid line) and $\Gamma_0(\beta)$ for H₂ and D₂ (dashed lines) multiplied by the indicated factors.

Frozen nuclei approximation fails!

Tolstikhin, Worner, Morishita, Phys. Rev. A. 87, 041401(R) (2013)

Isotope effect in tunneling ionization

QWP: Quarter-Wave Plate; AP: Aperature; SM: Spherical Mirror REMI: Reactoion Microspcopes

(1):
$$H_2 \rightarrow H_2^+$$

(2): $H_2 \rightarrow H_2^+ \xrightarrow{diss} H + H^+$
(3): $(H_2 \rightarrow H_2^+ \rightarrow H_2^+ \xrightarrow{CE} H^+ + H^+$

 $N_{\rm tot} = N_1 + N_2 + 0.5N_3$

Wang et al., Phys. Rev. Lett. 117, 083003 (2016)

Experimental results

Wang et al., Phys. Rev. Lett. 117, 083003 (2016)

Wang et al., Phys. Rev. Lett. 117, 083003 (2016)

Acknowledgments

Experiments

Griffith University

Han Xu Satya Undurti Atia-tul-Noor

Mick Pullen Xiaoshan Wang William Wallace Champak Khumri Dave Kielpinski

Prof Robert Sang

Theory Shanghai Jiao Tong University Feng He Australian National University Anatoli Kheifets Alex Brey University of Tsukuba Xiaomin Tong Drake University Klaus Bartschat Nicolas Douguet Gwanju Institute of Science and Technology Igor Ivanov

More research from Griffith group

Strong-field atomic ionization and excitation

Nida Haram **TH-016** Intensity-dependent shift in transverse electron momentum distribution for strong field ionization Rohan Glover **MO-026** Metastable argon production via strong-field excitation

Laser-ablated plasmas

Smijesh N. **TU-031** Optimization of laser plasma dynamics towards high order harmonic generation applications Kavya Rao **TU-032** Plume dynamics of a laser produced plasma:Single and double pulse schemes

Ultrafast molecular dynamics

Han Xu **WE-033** *Observing electron localization in a dissociating molecule in real time*

Atia-Tul-Noor **FR-039** Enhanced ionization of C_2H_2

High harmonics interferometry

Mumta Mustary **FR-024** Attosecond time delay in harmonic emissions of H_2 and D_2