cial report for ICPEAC XXX, Cairns, Australia

Dielectronic Recombination of Be-like ⁴⁰Ar¹⁴⁺ at the CSRm

Zhongkui Huang

Jul 27, 2017

niversity of China Academy of Sciences

Institute of Modern Physics, Chinese Academy of S

- I. Introduction and Motivation
- **II. Experimental setup and Method**

DR experimental setup @ CSRm, detuning scheme, data analysis

III. Results and Disscussion

Li-like ³⁶Ar¹⁵⁺, Be-like ⁴⁰Ar¹⁴⁺

IV. Summary and Outlook

Upcoming DR experiments at the CSRe DR precision spectroscopy at the future HIAF facility

roduction-RR and DR

roduction- TR

trielectronic recombination(TR)

- □ a free electron is captured;
- **Two bound electrons are excite resonantly;**
- The whole resonant recombination process through a triply excited state;

 $e^{-} + X^{q_{+}} \rightarrow \left[X^{(q-1)_{+}}\right]^{***} \rightarrow X^{(q-1)_{+}} + n \cdot h\nu$

otivation 1: Astrophysics

R experimental data can be used to:

- Diagnose status (T_e and n_e) of natural and man-made plasmas;
- Benchmark the astrophysics theory and model, interpret the spectra fictors of the spectra f

supernova explosion

ITER project

corona

otivation 2: Atomic structure

R technique as a precision spectroscopy tool;

- Test QED in strong field $(Au^{76+}, Pb^{79+}, U^{89+})$;
- Measure Isotope shift (142,150Nd⁵⁷⁺, 207,208Pb⁵³⁺) and hyperfine splitting (Sc¹⁸

otical transitions of Li-like and Be-like ionsc

□ Lifetime study of ³P₀ level [**I**≠0];

Test QED in strong fields and benchmark relativistic atomic theories;

R experimental setup at the HIRFL-CSRm

perimental parameters

Parameters (units)	Li-like ³⁶ Ar ¹⁵⁺	Be-like ⁴⁰ Ar ¹⁴⁺
Circumstance of CSRm (m)	161.0	161.00
Interaction length (m)	4.0	4.0
The radii of beam tube (cm)	25	25
Beam energy (MeV/u)	8.37	6.82
The max beam current (µA)	200	50
Beam momentum spread (δp/p)	2.0×10 ⁻⁴	2.2×10 ⁻⁴
Beam life time (s)	120	50
Cooling point (kV)	-4.5810	-3.7597
Electron beam current (mA)	112.90	118.40
The radii of electron beam (cm)	2.60	2.60
Magenet field at cooling section (GS)	390	390
Magenet field at gun section (GS)	1250	1250

uning timing scheme for DR experiments ne CSRm

Zhongkui Huang et al. Phys. Scr. T166 (2015) 014023

- **Consider both DR and** processes in this energy region;
- **The agreement between** experimental result and calculation becomes mu better;

□ N_{cut}=75

[1-10 eV] experimental results and calcula are in good agreement;

[around 0 eV] experimental results and calcula are are in obvious discrepancy

sma rate coefficients

The AUTOSTRUCTURE calculation in this work is in good agreement with Gu(200

surprisingly strong trielectro recombination resonances at low energy

perimental results: brief summary

- DR spectrum of Be-like argon was measured first time;
- TR resonances were observed in the measured spectrum;
- The plasma rate coefficients was derived and compared with the existe theoretical calculation;
- The difference of plasma rate coefficient at low energy can be explaine with the surprisingly strong trielectronic recombination resonances;
- The DR experiments at the CSRm pave the way for our upcoming DR experiments at the CSRe and also on the future facility HIAF;

tlook-upcoming DR experiment at the CSRe

Sketch wiew of DR experiment at the CSRe

- □ Much broader detuning energy rang [±30 kV~1500 eV (U⁸⁹+@200MeV/u]
- □ Astrophysics relevant DR spectrosco [H-like, He-like, Li-like, Be-like]
- Nuclear excitation by electron captu [NEEC]
- DR research on radioactive ion bear [CSRm + RIBLL2 + CSRe]

tlook-future DR experiment at the HIAF-SRing

The highlight of DR experiments at HIAF electron-cooler & an ultra-cold electron-target a unique research platform electron-ion recombination spectroscopy!

POSTER: Mon-6

SRing: Spectrometer ring

umforonco.200m

h:100 m y: 17MeV/u(U³⁴⁺)

SECR

Z.K. Huang, et al. Nucl. Instr. Meth. B

international cooperation group

IMPCAS, Lanzhou	X. Ma, Z. K. Huang, W. Q. Wen, H. B. Wang, S. Mahmood, N. Khan, X
	Y. Chai, L. J. Dou, X. L. Zhu, D. M. Zhao, L. J. Mao, Y. J. Yuan, J. Li
	X. M, Ma, J. C. Yang ;
USTC, Hefei	X. Xu, S. X. Wang, W. Q. Xu, L. F. Lin;
Uni. Fudan, Shanghai	T.H. Xu, K. Yao, Y. Yang;
GSI, Darmstadt	Th. Stöhlker, C. Brandau, A. Gumberidze, Yu. Litvinov, M. Steck;
Uni. Giessen	A. Müller, S. Schippers;
BINP, Novosibirsk	V. V. Parkhomchuk, V. B. Reva;
IAPCM, Beijing	C. Y. Li, X. Y. Han, J. G. Wang;
NWNU, Lanzhou	C. Z. Dong, L. Y. Xie;
Uni. Strathclyde	N. R. Badnell, Simon Preval;

University of Strathc Glasgow

Budker

Institute

of Nuclear

Thanks for your kind attention!

ta analysis

Detuning Voltages → **The relative energy between electron and ion in c.m. frame** ;

$$= \sqrt{m_e^2 c^4 + m_{ion}^2 c^4 + 2m_e m_{ion} \gamma_e \gamma_{ion} c^4 (1 - \beta_e \beta_{ion} \cos \theta)} - m_e c^2 - m_{ion} c^2}$$
Cooling
$$\gamma_{e-0} = \gamma_{i-0}$$
Detuning +
Correction
Correction
$$\gamma_e = 1 + \frac{E_{e-0} + \Delta E_e}{m_e c^2} = \gamma_i + \frac{\Delta E_e}{m_e c^2}$$
The recombined
spectrom
Count of recombined ion \rightarrow Rate coefficients ;
$$E_{rel}) = \frac{R}{N_i n_e (1 - \beta_e \beta_i)} \frac{C}{L} = q e^2 c^2 \pi r_e^2 \cdot \frac{\beta_e \beta_i}{1 - \beta_e \beta_i} \cdot \frac{RL}{I_{ion} I_e}$$

EEC (nuclear excitation by electron capture)

Adriana Pálffy et al. Phys. Lett. B 661 (2008) 330–334; X ma et al. Phys. Scr. T166 (2015) 014012 (4)