Control of H₂ dissociative ionization in the non-linear regime using EUV femtosecond pulses @FERMI

FERMI

Fabian Holzmeier Danielle Dowek Marius Hervé

Michael Meyer Thomas Baumann Alexander Achner

rotrone Trieste Dav

Carlo Callegari Michele Di Fraia Oksana Plekan Eleonore Roussel David Gauthier <u>Elettra Sincrotrone</u> Kevin Prince Robert Richter Paola Finetti

université Bordeaux

Henri Bachau

Fernando Martín Alicia Palacios Roger Bello

OBJECTIVE

- brilliance for a non-linear 2-photon process
- short pulses
- tunable in the EUV photon energy range
- >> FERMI FEL

first user experiments at wavelengths around 100 nm

Fabian Holzmeier

TWO-PHOTON IONIZATION OF H₂: THEORY

Fabian Holzmeier

ICPEAC XXX, 31 July 2017

3

EXPERIMENT @FERMI

O'Keeffe et al., Nucl. Instrum. Methods Phys. Res. B 284 (2012) 69-73.
 Lyamayev et al., J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 164007.

Fabian Holzmeier

ELECTRON VMI FOR A Σ INTERMEDIATE STATE

- Clear separation of electrons correlated to DI or NDI
- DI/NDI ratio can be determined: DI/NDI = 0.66 \geq
- \blacktriangleright Excitation of H₂⁺ vib. levels outside the one-photon FC region >> indication for nuclear dynamics

Fabian Holzmeier

ION VMI FOR A Σ INTERMEDIATE STATE

Electrons correlated to dissociative ionization

≻Energy conservation for DI:

 $2 \cdot hv = E_e + 2 \cdot E_i + E_{diss}$

comparison of electron and ion spectrum $f_{H^+ iKE B(v=9)}$ 0 1 2 3 4 5 6 7 8 9 10 11 12electron energy /eV

Fabian Holzmeier

COMPUTED ELECTRON SPECTRA

université **BORDEAUX**

Work in progress by R. Bello, A. Palacios, F. Martín, and H. Bachau :

time-dependent 2nd order perturbation theory
inclusion of autoionizing states and all couplings between direct ionization and autoionization
restricted to parallel orientation only (for the moment)

electron energy /eV

Fabian Holzmeier

ICPEAC XXX, 31 July 2017

7

EXPERIMENT VS. THEORY

Electrons correlated to non-dissociative ionization

➢ good agreement with theory
➢ Franck-Condon overlap of H₂(B¹Σ_u⁺) vibrational wavefunction with H₂⁺(X²Σ_g⁺) including dipoles

Electrons correlated to dissociative ionization?

► We're working on it...

Fabian Holzmeier

ION ANGULAR DISTRIBUTIONS

$$H_2 X({}^1\Sigma_g^+) \xrightarrow{h_v} H_2^* B({}^1\Sigma_u^+, v = 9) \xrightarrow{h_v} H + H^+ + e^-$$

$$I(\theta) = 1 + \boldsymbol{\beta}_2 P_2(\cos \theta) + \boldsymbol{\beta}_4 P_4(\cos \theta)$$

expected:

Fabian Holzmeier

Fabian Holzmeier

EXCITATION OF Σ and Π intermediate states

SUMMARY

Probe effect of nuclear dynamics in the outcome of 2-photon ionization of H₂ with femtosecond EUV FEL pulses

• Significant enhancement of dissociative ionization

 Dissociative and nondissociative photoionization depend strongly on the photon energy and the symmetry of the intermediate state(s) >> control

- 2nd order time-dependent perturbation theory to complement the experimental data (UA Madrid)
- Parallel (Σ) <u>and perpendicular</u> (Π) transitions soon

TOWARDS COHERENT CONTROL IN MOLECULES

In analogy to K. C. Prince et al., Nat. Phot. 10 (2016) 176-179

Fabian Holzmeier

ICPEAC XXX, 31 July 2017

13

THANK YOU!

Funding for Fermi experiment and ICPEAC:

Fabian Holzmeier ICPEAC XXX, 31 July 2017

Fabian Holzmeier

ION ANGULAR DISTRIBUTIONS

$$H_2 X({}^1\Sigma_g^+) \xrightarrow{h_v} H_2^* B({}^1\Sigma_u^+, v = 9) \xrightarrow{h_v} H + H^+ + e^-$$

$$I(\theta) = 1 + \boldsymbol{\beta}_2 P_2(\cos\theta) + \boldsymbol{\beta}_4 P_4(\cos\theta)$$

expected:

rotation?

Rotational periods from exp. rotational constants^[5] for v=9 (rigid rotor model):

1	L		_					8	37	0	
	2 (- 3 (-	⊦1(⊦2() n) n	ne ne	v) V)		с.	50 35	2 5	
۷ و	1 (- 5 (-	⊦33 ⊦49	3 n) n	ne ne	v) vj)		-	27 22	'5 5	

[5] Braig and Connerade, J. Phys. B: At. Mol. Opt. Phys. 18, L809 (1984).

Fabian Holzmeier

ELECTRON ANGULAR DISTRIBUTIONS

Fabian Holzmeier ICPEAC XXX, 31 July 2017

Fabian Holzmeier

EXPERIMENT @FERMI: LDM BEAMLINE

- 2-photon ionization at photon energies between 12.3 and 14.75 eV (101 – 84 nm)
- Pulse duration $\tau \approx 100$ fs, 10 Hz repetition rate
- pulsed supersonic molecular beam of H₂
- resonant excitation of selected vibrational levels in the B, C, and B' intermediate states of H_2 and ionization with a second photon
- VMI and TOF spectrometer^[2,3]
 - > TOF mass spectra
 - Electron velocity map images
 - ➤ H⁺ ion velocity map images

[2] O'Keeffe et al., Nucl. Instrum. Methods Phys. Res. B 284 (2012) 69-73.
[3] Lyamayev et al., J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 164007.

DI FOR DIFFERENT PULSE DURATIONS

time-dependent 2nd order perturbation theory computations for two-photon ionization via the B ${}^{1}\Sigma_{u}^{+}$ intermediate state: <u>first results</u>

<u>R. Bello</u>, A. Palacios, F. Martín (**UA Madrid**)

>> ionization into the repulsive $2p \sigma_u$ continuum state becomes more important for long pulse durations

COHERENT CONTROL IN ATOMS WITH AN FEL

LETTERS PUBLISHED ONLINE: 22 FEBRUARY 2016 | DOI: 10.1038/NPHOTON.2016.13

nature photonics

Coherent control with a short-wavelength free-electron laser

K. C. Prince^{12,3*}, E. Allaria¹, C. Callegari¹, R. Cucini¹, G. De Ninno^{1,4}, S. Di Mitri¹, B. Diviacco¹,
E. Ferrari¹, P. Finetti¹, D. Gauthier¹, L. Giannessi^{1,5}, N. Mahne¹, G. Penco¹, O. Plekan¹, L. Raimondi¹,
P. Rebernik¹, E. Roussel¹, C. Svetina^{1,6}, M. Trovò¹, M. Zangrando¹³, M. Negro⁷, P. Carpeggiani⁷,
M. Reduzzi⁷, G. Sansone⁷*, A. N. Grum-Grzhimailo⁸, E. V. Gryzlova⁸, S. I. Strakhova⁸, K. Bartschat⁹,
N. Douguet⁹, J. Venzke⁹, D. lablonskyi¹⁰, Y. Kumagai¹⁰, T. Takanashi¹⁰, K. Ueda¹⁰*, A. Fischer¹¹,
M. Coreno¹², F. Stienkemeier¹³, Y. Ovcharenko¹⁴, T. Mazza¹⁵ and M. Meyer¹⁵

Two-color (ω and 2ω) pulses from the FERMI seeded-FEL are longitudinally coherent and can be used for coherent control experiments with ultrahigh time-resolution (3 as)

ICPEAC XXX, 31 July 2017

21