FAST INTERACTIONS WITH SURFACES

COHERENCE & DECOHERENCE

María Silvia Gravielle

Instituto de Astronomía y Física del Espacio Buenos Aires, Argentina

FAST ATOM DIFRACTION

Surface Initial Value Representation (SIVR)

QUANTUM INTERFERENCE OF TRANSITION AMPLITUDES

Classically forbidden transitions

Surface Initial Value Representation (SIVR)

8.6 keV ${}^{4}\text{He} \rightarrow [100] \text{ LiF}(001)$

Gravielle et al., Phys. Rev. A 90 (2014) 052718

Surface Initial Value Representation (SIVR)

Gravielle et al., Phys. Rev. A 90 (2014) 052718

COHERENT LIGHTING

Atom interferometry

The van Cittert-Zernike theorem (1938)

"The wavefront from an incoherent extended quasi-monochromatic source will appears mostly coherence at large distances"

Degree of coherence: van Cittert-Zernike

Extended incoherent quasi-monochromatic source

Size of the wave packet:

Complex degree of coherence

Gravielle *et al.*, Phys. Rev. A **92** (2015) 062709

transversal coherence length

$$\sigma_{tr} = \frac{\lambda}{\sqrt{2}} \frac{L_c}{d}$$

Transversal coherence: slit width

⁴He →<110> LiF(001), E₁= 0.3 eV surpernum. rainbows unit-cell interference d = 1.0 mm1.5 d 1,0 - $\boldsymbol{\theta}_{f} \text{ (deg)}$ $\sigma_{\rm tr}$ 0.5-0,0-1.0 -1.0 **Corrugation of the potential** surface collimating slit inter-cell interference

Experimental confirmation

SIVR:: Gravielle *et al.*, Phys. Rev. A **92** (2015) 062709

Transversal coherence: impact energy

⁴He \rightarrow <110> LiF(001) E_{\perp} = 0.5 eV

Fixed collimation: d= 0.2 mm

transversal coherence length

$$\sigma_{tr} = \frac{\lambda}{\sqrt{2}} \frac{L_c}{d} \propto \frac{1}{\sqrt{E}}$$

Independent of:inelastic contributionsdetector resolution

Transversal coherence: atomic mass

Crystal spotting

2 keV Ne → <110> LiF(001), E_{\perp} = 0.3 eV

incidence direction

Crystal spotting

2 keV Ne → <110> LiF(001), E_{\perp} = 0.3 eV

surface potential

Crystal spotting

2 keV Ne →<110> LiF(001), E_{\perp} = 0.3 eV

Several coherently lighted cells: negligible

Axial coherence: slit length

Initial wave-packet: axial width

 $\Delta X_o \Delta K_{ox} \approx 1$

polar angle spread

 $\Delta \theta_{\rm o}$

axial coherence length

 $\lambda_1 = 2\pi/(K_i \sin\theta_i)$

perpendicular de Broglie wavelength

Slit length: normal momentum spread

small square slit

⁴He \rightarrow <110> LiF(001), E₁ = 0.3 eV

long rectangular slit

Probing different distances

DECOHERENT HEATING

Influence of the temperature

T= 300 K

LiF(001)

Influence of the temperature

T= 300 K

²⁰Ne → <110> LiF(001),
$$E_{\perp}$$
= 0.3 eV

LIF(001)

Influence of the temperature

T= 300 K

²⁰Ne →<110> LiF(001), *E*₁= 0.3 eV

SURFACE ANALYSIS

Atoms

Laser pulses

SURFACE ANALYSIS

FINAL REMARKS

COLLABORATORS

ATOMS:

- J. Miraglia
- G. Bocan
- J. Fuhr

LASER PULSES:

- C. Ríos Rubiano
- R. Della Picca
- D. Mitnik
- V. Silkin (Spain)

THANKS FOR THE ATTENTION

FAD spectra vs. slit width

⁴He → <110> LiF(001), *E*= 1 keV, *θ*_i= 0.99 deg

Gravielle et al., Phys. Rev. A 92 (2015) 062709

Slit length: normal momentum spread

 $1 \text{ keV } ^{4}\text{He} \rightarrow <110 > \text{LiF}(001)$

Gravielle et al., Nucl. Instr. Meth. B 382 (2016)

DOUBLE SLIT COLLIMATION

Double slit: *d*= 0.2 mm, *l*= 0.2 mm

⁴He \rightarrow <110> LiF(001), *E*= 1 keV, θ_i = 0.99 deg