Evaluated electron scattering cross sections from furfural molecules for modelling particle transport in the energy range 0-10000 eV

Gustavo García

Instituto de Física Fundamental Consejo Superior de Investigaciones Científicas (IFF-CSIC), Madrid, Spain

Motivation

- Biofuel precursor: atmospheric plasma or electron beam irradiation of biomass
- Analogue for the sugar backbone of the DNA helix – deoxyribose
- Improving radiation interaction models for industrial and biomedical applications

Furfural:

Modelling radiation and plama interactions

Input data bases*:

- Differential and integral, elastic and inelastic, electron scattering calculations
- Benchmarking experimental data: Elastic DCS, electronic excitation, ionisation and total scattering cross sections
- Experimental electron energy loss distribution functions
- Complementary data libraries: High energy particle interaction cross section (Born approximation)

*International collaboration

Input data bases*:

- Differential and integral, elastic and inelastic, electron scattering cross section calculations
- Benchmarking experimental data: Elastic DCS, electronic excitation, ionisation and total scattering cross sections
- Experimental electron energy loss distribution functions
- Complementary data libraries: High energy particle interaction cross section (Born approximation)

*International collaboration

Differential and integral, elastic and inelastic, electro

e-atom, e-molecule cross sections

- Low ene Schwing (São Pau
- Interme Independ additivity (Madrid)
- Rotatior Born apr
- Conden Screenin

Differential and integral, elastic and inelastic,

Condensed matter

High \rightarrow Intermediate \rightarrow Low Energy

Corrective factor: $s = \sigma^{\text{eff}} / \sigma = [1 + (\sigma^{c} / \sigma)^{p}]^{1/p}$

P=-21→0,5% convergence

Input data bases*:

- Differential and integral, elastic and inelastic, electron scattering calculations
- Benchmarking experimental data: Elastic DCS , ionisation and total scattering cross sections
- Experimental electron energy loss distribution functions
- Complementary data libraries: High energy particle interaction cross section (Born approximation)

*International collaboration

Benchmarking experimental data

- Electron differential scattering cross sections (elastic, electronic and vibrational excitations):
 Angular resolved crossed beam experiments (Lisbon, Adelaide)
- Ionisation and total scattering cross sections:: Transmission beam systems and mass spectrometers (Madrid, Juiz de Fora)

Input data bases*:

- Differential and integral, elastic and inelastic, electron scattering calculations
- Benchmarking experimental data: Elastic DCS, ionisation and total scattering cross sections
- Experimental electron energy loss distribution functions
- Complementary data libraries: High energy particle interaction cross section (Born approximation)

*International collaboration

Energy loss distribution functions

Crossed beams and gas cell spectrometers (Adelaide, Madrid)

Energy loss distribution functions

Input data bases*:

- Differential and integral, elastic and inelastic, electron scattering calculations
- Benchmarking experimental data: Elastic DCS, ionisation and total scattering cross sections
- Experimental electron energy loss distribution functions
- Complementary data libraries: High energy particle interaction cross section (Born approximation)

*International collaboration

High energy electron interaction data (E>10 keV)

50, 10keV electrons through liquid furfural

1.8 μm

Selected nanovolume

- Transmission beam measurements with a double electrostatic spectrometer
- Magnetically confined electron beam attenuation measurements

- Transmission beam measurements with a double electrostatic spectrometer
- Magnetically confined electron beam attenuation measurements

Experiment 2 Magnetic coils ($B \approx 0.1 T$) Pump 2 Pump 1 **Scattering** Chamber Electron gun **Retarding Field** MCP Analyser detector

e-Furfural Total Scattering Cross Sections (TCS)

Modelling low energy electron transport in furfural under intense axial magnetic field conditions (0.1T)

10 eV electron source

Input data

Differential

Transport profiles (experimental vs simulated)

Conclusions

- An evaluated database for e-furfural interactions has been obtained through an international collaboration
- The Low Energy Particle Track Simulation (LEPTS) code provides molecular level information for biomedical and industrial applications (using the above data)
- Accurate total electron scattering cross sections are reference values to check data base consistency (new experimental systems have been presented)
- Validation experiments provide valuable information on further improvements in both input data and experimental techniques

Acknowledgements

M. J. Brunger, D. B. Jones P. Limão-Vieira, F. Ferreira da Silva

* Australian Research Council

